Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
J Gastroenterol ; 59(2): 119-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925679

RESUMEN

BACKGROUND: Three-dimensional (3D) chromatin architecture frequently altered in cancer. However, its changes during the pathogenesis of hepatocellular carcinoma (HCC) remained elusive. METHODS: Hi-C and RNA-seq were applied to study the 3D chromatin landscapes and gene expression of HCC and ANHT. Hi-C Pro was used to generate genome-wide raw interaction matrices, which were normalized via iterative correction (ICE). Moreover, the chromosomes were divided into different compartments according to the first principal component (E1). Furthermore, topologically associated domains (TADs) were visualized via WashU Epigenome Browser. Furthermore, differential expression analysis of ANHT and HCC was performed using the DESeq2 R package. Additionally, dysregulated genes associated with 3D genome architecture altered were confirmed using TCGA, qRT-PCR, immunohistochemistry (IHC), etc. RESULTS: First, the intrachromosomal interactions of chr1, chr2, chr5, and chr11 were significantly different, and the interchromosomal interactions of chr4-chr10, chr13-chr21, chr15-chr22, and chr16-chr19 are remarkably different between ANHT and HCC, which resulted in the up-regulation of TP53I3 and ZNF738 and the down-regulation of APOC3 and APOA5 in HCC. Second, 49 compartment regions on 18 chromosomes have significantly switched (A-B or B-A) during HCC tumorigenesis, contributing to up-regulation of RAP2A. Finally, a tumor-specific TAD boundary located on chr5: 6271000-6478000 and enhancer hijacking were identified in HCC tissues, potentially associated with the elevated expression of MED10, whose expression were associated with poor prognosis of HCC patients. CONCLUSION: This study demonstrates the crucial role of chromosomal structure variation in HCC oncogenesis and potential novel biomarkers of HCC, laying a foundation for cancer precision medicine development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Cromatina/genética , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Cromosomas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
2.
DNA Cell Biol ; 42(10): 617-637, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37610843

RESUMEN

Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.


Asunto(s)
Azoospermia , Proteínas de Unión al GTP Monoméricas , Humanos , Masculino , Testículo/metabolismo , Azoospermia/genética , Azoospermia/metabolismo , Semen/metabolismo , Expresión Génica , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas Activadoras de ras GTPasa/genética , Ancirinas/genética , Ancirinas/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
3.
Ocul Surf ; 29: 68-76, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094778

RESUMEN

PURPOSE: To identify specific dry eye disease (DED) tear biomarker(s) using tear proteomic analysis, clinical parameters, and their correlations before and after DED treatment. METHODS: A prospective, double-blinded, national multicenter clinical study was performed using data from 80 DED patients. The patients were treated with 0.1% cyclosporine (CsA, n = 28), 0.05% CsA (n = 26), or 3% diquafosol (DQS, n = 26) eye drops, and tear proteome changes and clinical outcomes (tear break-up time [TBUT], corneal erosion [Cor-Er], conjunctival erosion [Conj-Er], and symptom assessment in dry eye [SANDE] scores) were observed at 4, 8, and 12 weeks. For all clinical parameters, correlation analysis was performed between the three drug conditions and the differentially expressed proteins (DEPs) from the proteomic analysis. RESULTS: AFM, ALCAM, CFB, H1-4, PON1, RAP1B, and RBP4 were identified in all treatment groups and were downregulated after treatment. All clinical parameters significantly improved at 12 weeks than at baseline (p-value <0.0001); however, their values were not significantly different among groups, except for Cor-Er (p-value = 0.007). Compared with the DQS group, Cor-Er score significantly improved after treatment with 0.1% and 0.05% CsA. The seven DEPs identified in all groups were not consistently correlated with the clinical parameters (p-value >0.05). CONCLUSIONS: Despite differences in drug concentration and action mechanisms, the improvement levels of TBUT, Cor-Er, and SANDE scores were clinically adequate. However, useful tear protein biomarkers, clinically acceptable biomarker combinations correlating with clinical parameters, and clinically acceptable levels of specificity and sensitivity were not identified.


Asunto(s)
Úlcera de la Córnea , Síndromes de Ojo Seco , Humanos , Proteómica , Estudios Prospectivos , Ciclosporina/uso terapéutico , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Biomarcadores , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/uso terapéutico , Proteínas Plasmáticas de Unión al Retinol , Proteínas de Unión al GTP rap/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 382-393, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36951484

RESUMEN

Acute myeloid leukemia (AML) is a myeloid malignancy with generally high mortality. Although recent advances in AML research have revealed that circRNAs play significant roles in AML progression, our understanding of the leukemogenic mechanism of circRNAs remains very limited. In this study, increased expression of hsa_circ_0013880 was observed in bone marrow mononuclear cells (BMNCs) of AML patients. Overexpression of hsa_circ_0013880 promotes AML cell proliferation and migration and reduces cell apoptosis. Mechanistically, hsa_circ_0013880 could elevate the expression of USP32, a deubiquitinating enzyme that is highly expressed in the BMNCs of AML patients. Given the deubiquitination function of USP32, we further hypothesize that USP32 may mediate the malignant behaviors of AML cells by regulating the stability of Ras-related protein (Rap1b). At the molecular level, we find that silencing of USP32 increases ubiquitinated Rap1b. Overexpression of Rap1b restores the effects of USP32 knockdown, which further verifies our hypothesis. In addition, we propose another hypothesis that a potential regulatory network among hsa_circ_0013880, miR-148a-3p/miR-20a-5p and USP32 might exist in the development of AML, according to bioinformatics website predictions and our preliminary experimental verification. Overall, our findings will enrich the understanding of the hsa_circ_0013880/USP32/Rap1b axis in AML development, which may contribute to the development of novel therapeutic strategies for AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Humanos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al GTP rap/metabolismo , ARN Circular/genética , ARN Circular/metabolismo
5.
J Dent Res ; 102(3): 302-312, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366779

RESUMEN

Abnormal stress loading has been considered a major contributor to the initiation of temporomandibular joint osteoarthritis (TMJOA), but studies to date have not identified a functional molecule that transforms physical stress into biological or biochemical signaling in chondrocytes in response to excessive mechanical stress. Ras-related protein Rap-2a (RAP2A) is reportedly a molecular switch that relays extracellular matrix rigidity signals via the Hippo/Yes-associated protein (YAP) pathway. In the present study, RAP2A diminished with cartilage degradation in unilateral anterior crossbite-induced TMJOA mice, as well as severe cartilage matrix degeneration and TMJOA formation in Cre-loxP-mediated conditional RAP2A knockout mice. RAP2A in chondrocytes regulated the Hippo/YAP pathway directly in response to matrix stiffness, and RAP2A/Hippo/YAP was critical for a chondrocyte phenotype switch and matrix synthesis function. Loss of RAP2A impaired cartilage homeostasis and altered chondrocyte phenotype via Hippo/YAP/SRY-box transcription factor 9 signaling. It may be possible to generate therapeutic strategies using RAP2A or YAP to attenuate the TMJOA pathological process at an early stage. This is the first study to reveal the molecular function of RAP2A in TMJOA progression as a mechanotransduction molecule in condylar chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Mecanotransducción Celular , Cartílago Articular/patología , Transducción de Señal , Articulación Temporomandibular/metabolismo , Condrocitos/metabolismo , Osteoartritis/patología , Proteínas de Unión al GTP rap/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499729

RESUMEN

Cutaneous squamous cell carcinoma (CSCC) is an epidermal skin cancer that evolves from normal epidermis along several pre-malignant stages. Previously we found specific miRNAs alterations in each step along these stages. miR-199a-3p expression decreases at the transition to later stages. A crucial step for epithelial carcinoma cells to acquire invasive capacity is the disruption of cell-cell contacts and the gain of mesenchymal motile phenotype, a process known as epithelial-to-mesenchymal transition (EMT). This study aims to study the role of decreased expression of miR-199a-3p in keratinocytes' EMT towards carcinogenesis. First, we measured miR-199a-3p in different stages of epidermal carcinogenesis. Then, we applied Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) assay to search for possible biochemical targets of miR-199a-3p and verified that Ras-associated protein B2 (RAP2B) is a bona-fide target of miR-199a-3p. Next, we analyzed RAP2B expression, in CSCC biopsies. Last, we evaluated possible mechanisms leading to decreased miR-199a-3p expression. miR-199a-3p induces a mesenchymal to epithelial transition (MET) in CSSC cells. Many of the under-expressed genes in CSCC overexpressing miR-199a-3p, are possible targets of miR-199a-3p and play roles in EMT. RAP2B is a biochemical target of miR-199a-3p. Overexpression of miR-199a-3p in CSCC results in decreased phosphorylated focal adhesion kinase (FAK). In addition, inhibiting FAK phosphorylation inhibits EMT marker genes' expression. In addition, we proved that DNA methylation is part of the mechanism by which miR-199a-3p expression is inhibited. However, it is not by the methylation of miR-199a putative promoter. These findings suggest that miR-199a-3p inhibits the EMT process by targeting RAP2B. Inhibitors of RAP2B or FAK may be effective therapeutic agents for CSCC.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica , Proteínas ras/metabolismo , Línea Celular Tumoral , Neoplasias Cutáneas/patología , MicroARNs/genética , MicroARNs/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
7.
Acta Biochim Pol ; 69(4): 719-724, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36444911

RESUMEN

Retinoblastoma generally affects children and causes permanent vision failure or even death. MicroRNAs (miRs) have recently gained much attention during recent years. The miR-708 acts as a tumor suppressor in several human cancers, but the former has not been functionally characterized in human retinoblastoma. The present study was designed to investigate the role of miR-708 in human retinoblastoma. The results showed that miR-708 is significantly (P<0.05) downregulated in retinoblastoma cell lines. MiR-708 overexpression significantly (P<0.05) inhibited retinoblastoma cell growth and proliferation by inducing apoptosis. Furthermore, retinoblastoma cells overexpressing miR-708 exhibited a markedly lower migratory rate and invasiveness compared to negative control cells. The bioinformatics and dual luciferase assay revealed a RAS oncogene family protein, RAP2B, which acts as the regulatory target and functional mediator of the molecular role of miR-708 in retinoblastoma. Together, the present study revealed the tumor suppressor role of miR-708 and pointed to the therapeutic implications of miR-708/RAP2B in the treatment of retinoblastoma.


Asunto(s)
MicroARNs , Neoplasias de la Retina , Retinoblastoma , Proteínas de Unión al GTP rap , Niño , Humanos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Genes ras , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/patología
8.
Dis Markers ; 2022: 9310048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277988

RESUMEN

Background: Oral cancer (OC) is common cancer in the world. Long noncoding RNAs (lncRNAs) have been shown to be involved in cancer regulation, including oral cancer (OC). The aim of this study was to investigate the role of lncRNA deleted in lymphocytic leukemia 2 (DLEU2) in oral cancer. Method: The Gene Expression Omnibus database was used to analyze differentially expressed lncRNA/microRNA (miRNA, miR)/mRNA. The expression levels of DLEU2, miR-30a-5p, and RAP1B in OC cells were detected by RT-qPCR. Dual-luciferase was used to analyze the binding of lncRNA/miRNA/mRNA. Cell Counting Kit-8 was used to measure cell proliferation. Transwell assay was used to inspect cell migration and invasion abilities. Western blot was used to detect MAPK pathway-related protein levels. Result: Our research shows that, in contrast to miR-30a-5p, DLEU2 or RAP1B was upregulated in OC cells, and high expression of DLEU2 or RAP1B was associated with poorer overall survival. Inhibiting the expression of DLEU2 slowed the proliferation and reduced the ability of migration and invasion of Tca8113 and CAL-27 cells. miR-30a-5p was predicted to interact with DLEU2 or RAP1B by bioinformatics, and dual-luciferase analysis confirmed this interaction. Notably, si-DLEU2 suppressed RAP1B expression and protein level, and after overexpression of RAP1B in OC cells, reversal of suppressed DLEU2 expression was observed. Furthermore, the inhibitory effect of si-DLEU2 on MAPK signaling was reversed by overexpression of RAP1B. Therefore, si-DLEU2 regulates MAPK signaling through the miR-30a-5p/RAP1B axis and inhibits OC development. Conclusion: DLEU2 contributed to proliferation, migration and invasion via miR-30a-5p/RAP1B axis to regulate MAPK signaling pathway in OC cells.


Asunto(s)
MicroARNs , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Boca/genética , ARN Mensajero , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
9.
Dis Markers ; 2022: 9701047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046374

RESUMEN

Objective: The objective of this study is to explore the effects of microRNA-33a-5p (miR-33a-5p)-ras-related protein Rap-2a (RAP2A) on biological functions of gastric cancer (GC) and to find the potential functional mechanism. Methods: We measured the miR-33a-5p expression in 30 GC tissues and cellular level and 30 adjacent normal tissues as control. Besides, the expression of miR-33a-5p was checked at cell level as well. To screen the possible targets of miR-33a-5p, prediction software was used and gene RAP2A attracted our attention. Through a series of experiments including real-time polymerase chain reaction (qRT-PCR), luciferase assay, and western blotting (WB), we verified RAP2A as a potential target of miR-33a-5p. The impacts of miR-33a-5p and RAP2A on biological functions of GC cell lines (BGC-823 and MGC-803) were analyzed by subsequent experiments. Cell invasion was tested by invasion assays. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. Cell clone was measured by clone formation assays. Finally, the expression of RAP2A protein was analyzed by WB assay. Results: We found miR-33a-5p was expressed lowly in GC tissues and cells. Overexpression of miR-33a-5p in BGC-823 and MGC-803 cells greatly inhibited the cell invasion and colony number. Furthermore, compared to sh-control (shControl), RAP2A knockdown (sh-RAP2A/shRAP2A) raised the sensitivity of GC cells to 5-FU significantly, characterized as reducing cell apoptosis. Conclusions: The expression of miR-33a-5p was lower in GC cell lines and tissues obviously, indicating that miR-33a-5p served as the antitumor gene in GC. The expression of RAP2A regulated negatively the sensitivity of GC cells to 5-FU. According to our in vitro experiments, miR-33a-5p/RAP2A was likely to become a new therapeutic target for GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Línea Celular Tumoral , Proliferación Celular/genética , Fluorouracilo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/patología , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
10.
J Hazard Mater ; 440: 129793, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36029734

RESUMEN

Microcystin-LR (MC-LR) is a very common toxic cyanotoxins threating ecosystems and the public health. This study aims to explore the long-term effects and potential toxicity mechanisms of MC-LR exposure at environmental levels on colorectal injury. We performed histopathological, biochemical indicator and multi-omics analyses in mice with low-dose MC-LR exposure for 12 months. Long-term environmental levels of MC-LR exposure caused epithelial barrier disruption, inflammatory cell infiltration and an increase of collagen fibers in mouse colorectum. Integrated proteotranscriptomics revealed differential expression of genes/proteins, including CSF1R, which were mainly involved in oxidative stress-induced premature senescence and inflammatory response. MC-LR induced chronic inflammation and fibrosis through oxidative stress and CSF1R/Rap1b signaling pathway were confirmed in cell models. We found for the first time that long-term environmental levels of MC-LR exposure caused colorectal chronic inflammation, fibrosis and barrier disruption via a novel CSF1R/Rap1b signaling pathway. Moreover, MC-LR changed the gut microbiota and microbial-related metabolites in a vicious cycle aggravating colorectal injury. These findings provide novel insights into the effects and toxic mechanisms of MC-LR and suggest strategies for the prevention and treatment of MC-caused intestinal diseases.


Asunto(s)
Colon , Inflamación , Microcistinas , Animales , Colágeno , Colon/patología , Fibrosis , Inflamación/inducido químicamente , Toxinas Marinas/toxicidad , Ratones , Microcistinas/toxicidad , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap/metabolismo
11.
Life Sci ; 307: 120906, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007610

RESUMEN

Targeted therapy is receiving considerable attention from the researchers around the globe owing to the increased drug-resistance and incidences of cancer recurrences. MicroRNAs (miRNAs) exhibits tremendous potential as a candidate for molecular targeted therapy in cancer. Unfortunately, majority of research related to microRNAs are focussed on either a particular miRNA or a set of unrelated miRNAs. There is lack of holistic knowledge on differential co-expression of miRNA clusters in regulating the gene expression under physiological conditions. Previously, we reported the cooperative effect of hsa-miR-23a~27a~24-2 cluster in inducing ER (Endoplasmic Reticulum) stress-mediated apoptotic cell death of HEK cells. In the present study, we have investigated the common anti-cancer effects of individual members of this cluster. Our in silico analysis identified twelve common target genes distributed across three independent clusters. Furthermore, we found NCOA1, NLK, and RAP1B to fall in a single cluster with NCOA1 as a central hub molecule. Prognostic analysis showed profound involvement of these three genes in the breast cancer progression and metastasis. We further demonstrated that alteration in the levels of individual members of miR-23a~27a~24-2 cluster commonly regulates the invasive migration of breast cancer cells by modulating EMT and cytoskeletal pathway proteins. Our results reveal a new insight into the therapeutic potential of individual members of the pro-apoptotic hsa-miR-23a~27a~24-2 cluster family against metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estrés del Retículo Endoplásmico , Femenino , Humanos , MicroARNs/metabolismo , Recurrencia Local de Neoplasia , Coactivador 1 de Receptor Nuclear , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al GTP rap/metabolismo
12.
Viruses ; 14(5)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35632705

RESUMEN

The E6 oncoprotein of HPV16 variants differentially alters the transcription of the genes involved in migration and non-coding RNAs such as lncRNAs. The role of the lncRNA MINCR in cervical cancer and its relationship with variants of oncogenic HPV remain unknown. Therefore, the objective of this study was to analyze the effect of the E6 oncoprotein of the AA-c variant of HPV16 in cell migration through the MINCR/miR-28-5p/RAP1B axis. To explore the functional role of MINCR in CC, we used an in vitro model of C33-A cells with exogenous expression of the E6 oncoprotein of the AA-c variant of HPV16. Interfering RNAs performed MINCR silencing, and the expression of miR-28-5p and RAP1B mRNA was analyzed by RT-qPCR. We found that C33-A/AA-c cells expressed MINCR 8-fold higher compared to the control cells. There is an inverse correlation between the expression of miR-28-5p and RAP1B in C33-A/AA-c cells. Our results suggest that MINCR might regulate the expression of RAP1B through the inhibition of miR-28-5p in CC cells expressing the E6 oncoprotein of HPV16 AA-c. We report, for the first time, that the MINCR/miR-28-5p/RAP1B axis positively regulates cell migration in CC-derived cells that express the E6 oncoprotein of the AA-c variant of HPV16.


Asunto(s)
MicroARNs , Proteínas Oncogénicas Virales , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Proteínas de Unión al GTP rap , Línea Celular Tumoral , Movimiento Celular , Femenino , Papillomavirus Humano 16 , Humanos , MicroARNs/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras , Neoplasias del Cuello Uterino/genética , Proteínas de Unión al GTP rap/metabolismo
13.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 361-369, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35538031

RESUMEN

Pancreatic cancer is highly lethal due to its aggressive invasive properties and capacity for metastatic dissemination. Additional therapeutic targets and effective treatment options for patients with tumours of high invasive capacity are required. Ras-related protein-2a (RAP2) is a member of the GTP-binding proteins. RAP2 has been reported to be widely upregulated in many types of cancers via regulating cytoskeleton reorganization, cell proliferation, migration, and adhesion, as well as inflammation. As a member of the RAS oncogene family, which has been demonstrated to drive pancreatic cancer oncogenesis and many other malignancies, the physiological roles of RAP2 in pancreatic cancer have seldom been discussed. In the present study, we explored the correlation between RAP2 expression and the prediction of overall survival of pancreatic cancer patients. Mechanistic studies were carried out to shed light on the role of RAP2 in pancreatic cancer invasion and how RAP2 is regulated in the invasive process. Our results demonstrated that patients with higher RAP2 expression showed unfavourable prognoses. studies demonstrated that silencing of inhibited the invasion of pancreatic cancer cells. Moreover, our results demonstrated that transforming growth factor-ß1 (TGF-ß1), an inducer of the metastatic potential of pancreatic cancer cells, regulates the expression of RAP2 via the transcription factor c-Myc. In conclusion, the present study uncovered RAP2 as a novel predictive marker and therapeutic target for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta1 , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Invasividad Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Neoplasias Pancreáticas
14.
Platelets ; 33(8): 1301-1306, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35514261

RESUMEN

Platelet activation by adenosine diphosphate (ADP) is mediated through two G-protein-coupled receptors, P2Y1 and P2Y12, which signal through Gq and Gi, respectively. P2Y1 stimulation leads to phospholipase C activation and an increase in cytosolic calcium necessary for CalDAG-GEF1 activation. Engagement of P2Y12 inhibits adenylate cyclase, which reduces cAMP, and activation of PI3-kinase, which inhibits RASA3 resulting in sustained activated Rap1b. In this study we activated human platelets with 2-MeSADP in the presence of LY294002, a PI3-kinase inhibitor, AR-C69931MX, a P2Y12 antagonist or MRS2179, a P2Y1 antagonist. We measured the phosphorylation of Akt on Ser473 as an indicator of PI3-kinase activity. As previously shown, LY294002 and ARC69931MX abolished 2MeSADP-induced Akt phosphorylation. MRS2179 reduced ADP-induced Akt phosphorylation but did not abolish it. Rap1b activation, however, was only reduced, but not ablated, using LY294002 and was completely inhibited by ARC69931MX or MRS2179. Furthermore, 2MeSADP-induced Rap1b activation was abolished in either P2Y1 or P2Y12 null platelets. These data suggest that ADP-induced Rap1b activation requires both P2Y1 and P2Y12. In addition, although stimulation of P2Y12 results in PI3-kinase activation leading to Akt phosphorylation and Rap1b activation, Rap1b activation can occur independently of PI3-kinase downstream of P2Y12. Thus, we propose that the P2Y12 receptor can regulate Rap1b, possibly through RASA3, in a pathway independent of PI3-kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores Purinérgicos P2 , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenilil Ciclasas/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antagonistas del Receptor Purinérgico P2Y , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Tionucleótidos , Fosfolipasas de Tipo C/metabolismo , Proteínas de Unión al GTP rap/metabolismo
15.
Am J Med Genet A ; 188(9): 2808-2814, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35451551

RESUMEN

RAP1B is a RAS-superfamily small GTP-binding protein involved in numerous cell processes. Pathogenic gain-of-function variants in this gene have been associated with RAP1B-related syndromic thrombocytopenia, an ultrarare disorder characterized by hematologic abnormalities, neurodevelopmental delays, growth delay, and congenital birth defects including cardiovascular, genitourinary, neurologic, and skeletal systems. We report a 23-year-old male with a novel, de novo RAP1B gain-of-function variant identified on genome sequencing. This is the third reported case which expands the molecular and phenotypic spectrum of RAP1B-related syndromic thrombocytopenia.


Asunto(s)
Trombocitopenia , Adulto , Humanos , Masculino , Trombocitopenia/genética , Adulto Joven , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
16.
Stem Cell Res Ther ; 13(1): 138, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365226

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) therapy is a novel treatment strategy for cancer and a wide range of diseases with an excessive immune response such as ulcerative colitis (UC), due to its powerful immunomodulatory properties and its capacity for tissue regeneration and repair. One of the promising therapeutic options can focus on MSC-secreted exosomes (MSC-Exo), which have been identified as a type of paracrine interaction. In light of a wide variety of recent experimental studies, the present review aims to seek the recent research advances of therapies based on the MSC-Exo for treating UC and colorectal cancer (CRC). METHODS: A systematic literature search in MEDLINE, Scopus, and Google Scholar was performed from inception to December 2021 using the terms [("colorectal cancer" OR "bowel cancer" OR "colon cancer" OR "rectal cancer") AND (exosome) AND (stem cell) AND ("inflammatory bowel disease" OR "Crohn's disease" OR "colitis")] in titles and abstracts. FINDINGS: Exosomes derived from various sources of MSCs, including human umbilical cord-derived MSCs (hUC-MSCs), human adipose-derived MSCs (hAD-MSCs), human bone marrow-derived MSCs (hBM-MSCs), and olfactory ecto-MSCs (OE-MSCs), have shown the protective role against UC and CRC. Exosomes from hUC-MSCs, hBM-MSCs, AD-MSCs, and OE-MSCs have been found to ameliorate the experimental UC through suppressing inflammatory cells including macrophages, Th1/Th17 cells, reducing the expression of proinflammatory cytokines, as well as inducing the anti-inflammatory function of Treg and Th2 cells and enhancing the expression of anti-inflammatory cytokines. In addition, hBM-MSC-Exo and hUC-MSC-Exo containing tumor-suppressive miRs (miR-3940-5p/miR-22-3p/miR-16-5p) have been shown to suppress proliferation, migration, and invasion of CRC cells via regulation of RAP2B/PI3K/AKT signaling pathway and ITGA2/ITGA6. KEY MESSAGES: The MSC-Exo can exert beneficial effects on UC and CRC through two different mechanisms including modulating immune responses and inducing anti-tumor responses, respectively.


Asunto(s)
Colitis Ulcerosa , Neoplasias Colorrectales , Exosomas , Células Madre Mesenquimatosas , Colitis Ulcerosa/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Exosomas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rap/metabolismo
17.
Yale J Biol Med ; 95(1): 45-56, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35370486

RESUMEN

Successful hematopoietic cell transplantation (HCT) depends on rapid engraftment of the progenitor and stem cells that will reestablish hematopoiesis. Rap1A and Rap1B are two closely related small GTPases that may affect platelet and neutrophil engraftment during HCT through their roles in cell adhesion and migration. ß-adrenergic signaling may regulate the participation of Rap1A and Rap1B in engraftment through their inhibition or activation. We conducted a correlative study of a randomized controlled trial evaluating the effects of the nonselective ß-antagonist propranolol on expression and prenylation of Rap1A and Rap1B during neutrophil and platelet engraftment in 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected 7 days (baseline) and 2 days (Day -2) before HCT, and 28 days after HCT (Day +28). Circulating polymorphonuclear cells (PMNC) were isolated and analyzed via immunoblotting to determine levels of prenylated and total Rap1A versus Rap1B. Twelve participants were randomized to the intervention and 13 to the control. Rap1A expression significantly correlated with Rap1B expression. Rap1B expression significantly correlated with slower platelet engraftment; however, this association was not observed in the propranolol-treated group. There were no significant associations between neutrophil engraftment and Rap1A or Rap1B expression. Post hoc exploratory analyses did not reveal an association between social health variables and Rap1A or Rap1B expression. This study identifies a greater regulatory role for Rap1B than Rap1A in platelet engraftment and suggests a possible role for ß-adrenergic signaling in modulating Rap1B function during HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Propranolol , Adrenérgicos , Humanos , Propranolol/farmacología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
18.
Aging (Albany NY) ; 14(7): 3293-3312, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417854

RESUMEN

Metastasis is the major cause of death in gastric cancer patients and altered expression of Nrf2 is associated with cancer development. This study assessed Nrf2 and HO-1 expression and hypoxia-induced Nrf2 expression in the promotion of metastatic potential of gastric cancer cells, the relationship of Rap1b and Nrf2 was also discussed. Nrf2 and HO-1 expression were significantly associated with clinicopathological characteristic and were independent prognostic predictors in gastric cancer patients. Hypoxia up-regulated the expression of Nrf2, HO-1 and HIF-1α, whereas knockdown of Nrf2 inhibited cell invasion capacity and reduced the expression of Nrf2, HO-1 and HIF-1α. Patients in the Rap1b (+) Nrf2 (+) group had worst overall survival compared with those from other groups. Knockdown of Rap1b and Nrf2 significantly inhibited cell invasion capacity in the common group compared with the other groups. Hypoxia or VEGF-A facilitated the nuclear translocation of Nrf2 through Rap1b or VEGFR2. Hypoxia or VEGF-A did not induce the phosphorylation of P-Erk1/2 and P-Akt after knockdown of Rap1b or VEGFR2. Hypoxia promoted the gastric cancer malignant behavior through the upregulation of Rap1b and Nrf2. Hypoxia/VEGF-A-Rap1b/VEGFR2 facilitated the nuclear translocation of Nrf2. Targeting Rap1b and Nrf2 may be a novel therapeutic strategy for gastric cancer.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias Gástricas , Humanos , Hipoxia de la Célula , Línea Celular Tumoral , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo , Pronóstico , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular
19.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293963

RESUMEN

Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.


Asunto(s)
Neoplasias de la Mama , Proteínas Cullin , Proteínas de Unión al GTP rap , Citoesqueleto de Actina , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proteínas Cullin/metabolismo , Femenino , Humanos , Seudópodos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rap/metabolismo
20.
Cell Mol Biol Lett ; 27(1): 24, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260078

RESUMEN

BACKGROUND: Transmembrane protein 43 (TMEM43), a member of the transmembrane protein subfamily, plays a critical role in the initiation and development of cancers. However, little is known concerning the biological function and molecular mechanisms of TMEM43 in pancreatic cancer. METHODS: In this study, TMEM43 expression levels were analyzed in pancreatic cancer samples compared with control samples. The relationship of TMEM43 expression and disease-free survival (DFS) and overall survival (OS) were assessed in pancreatic cancer patients. In vitro and in vivo assays were performed to explore the function and role of TMEM43 in pancreatic cancer. Coimmunoprecipitation (co-IP) followed by protein mass spectrometry was applied to analyze the molecular mechanisms of TMEM43 in pancreatic cancer. RESULTS: We demonstrated that TMEM43 expression level is elevated in pancreatic cancer samples compared with control group, and is correlated with poor DFS and OS in pancreatic cancer patients. Knockdown of TMEM43 inhibited pancreatic cancer progression in vitro, decreased the percentage of S phase, and inhibited the tumorigenicity of pancreatic cancer in vivo. Moreover, we demonstrated that TMEM43 promoted pancreatic cancer progression by stabilizing PRPF3 and regulating the RAP2B/ERK axis. CONCLUSIONS: The present study suggests that TMEM43 contributes to pancreatic cancer progression through the PRPF3/RAP2B/ERK axis, and might be a novel therapeutic target for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA